必发88唯一官网登入

<cite id="xz27z037ya"></cite><cite id="xz27z037ya"></cite><cite id="xz27z037ya"></cite><cite id="xz27z037ya"></cite>
  • <cite id="xz27z037ya"></cite><cite id="xz27z037ya"></cite><cite id="xz27z037ya"></cite><cite id="xz27z037ya"></cite>
  • <cite id="xz27z037ya"></cite><cite id="xz27z037ya"></cite><cite id="xz27z037ya"></cite><cite id="xz27z037ya"></cite>
  • 射频电路设计——理论与应用(第二版)(英文版)

    2013-05-13 来源:必发88唯一官网登入 我要评论(0) 字号:
    主题图书: 射频电路
    定价: ¥ 65
    作者: (美)路德维格,(美)波格丹诺夫 著
    出版: 电子工业出版社
    书号: 9787121100956
    语言: 简体中文
    日期: 2010-01-01
    版次: 1 页数: 553
    开本: 16开 查看: 0
    射频电路设计——理论与应用(第二版)(英文版)

    商城购买

    服务商城 客服电话 配送服务 优惠价 购买
    400-711-6699 满29至69元,免运费! ¥52

    图书介绍

    本书从低频电路理论到射频、微波电路理论的演化过程出发,讨论以低频电路理论为基础并结合高频电压、电流的波动特征来分析和设计射频、微波系统的方法——微波等效电路法,使不具备电磁场理论和微波技术背景的读者也能了解和掌握射频、微波电路的基本设计原则和方法。全书共10章,涵盖传输线、匹配器、滤波器、混频器、放大器和振荡器等主要射频微波系统单元的理论分析和设计问题及电路分析工具(圆图、网络参量和信号流图)。书中例题非常有实用价值。全书大多数电路都经过ADS仿真,并提供标准MATLAB计算程序。
    本书适合作为通信、电子类学科学生的双语课程教材,也适合工程技术人员参考。

    图书目录

    Chapter 1 Introduction/1
    1.1 Importance of Radio Frequency Design/2
    1.2 Dimensions and Units/5
    1.3 Frequency Spectrum/7
    1.4 RF Behavior of Passive Components/8
    1.4.1 Resistors at High Frequency/13
    1.4.2 Capacitors at High Frequency/15
    1.4.3 Inductors at High Frequency/18
    1.5 Chip Components and Circuit Board Considerations/20
    1.5.1 Chip Resistors/20
    1.5.2 Chip Capacitors/21
    1.5.3 Surface-Mounted Inductors/22
    1.6 RF Circuit Manufacturing Processes/22
    1.7 Summary/25
    Chapter 2 Transmission Line Analysis/33
    2.1 Why Transmission Line Theory?/33
    2.2 Examples of Transmission Lines/36
    2.2.1 Two-Wire Lines/36
    2.2.2 Coaxial Line/37
    2.2.3 Microstrip Lines/37
    2.3 Equivalent Circuit Representation/39
    2.4 Theoretical Foundation/41
    2.4.1 Basic Laws/41
    2.5 Circuit Parameters for a Parallel-Plate Transmission Line/46
    2.6 Summary of Different Line Configurations/49
    2.7 General Transmission Line Equation/49
    2.7.1 Kirchhoff Voltage and Current Law Representations/49
    2.7.2 Traveling Voltage and Current Waves/53
    2.7.3 Characteristic Impedance/53
    2.7.4 Lossless Transmission Line Model/54
    2.8 Microstrip Transmission Lines/54
    2.9 Terminated Lossless Transmission Line/58
    2.9.1 Voltage Reflection Coefficient/58
    2.9.2 Propagation Constant and Phase Velocity/60
    2.9.3 Standing Waves/60
    2.10 Special Termination Conditions/63
    2.10.1 Input Impedance of Terminated Lossless Line/63
    2.10.2 Short-Circuit Terminated Transmission Line/64
    2.10.3 Open-Circuited Transmission Line/66
    2.10.4 Quarter-Wave Transmission Line/67
    2.11 Sourced and Loaded Transmission Line/70
    2.11.1 Phasor Representation of Source/70
    2.11.2 Power Considerations for a Transmission Line/71
    2.11.3 Input Impedance Matching/73
    2.11.4 Return Loss and Insertion Loss/74
    2.12 Summary/76
    Chapter 3 The Smith Chart/83
    3.1 From Reflection Coefficient to Load Impedance/83
    3.1.1 Reflection Coefficient in Phasor Form/84
    3.1.2 Normalized Impedance Equation/85
    3.1.3 Parametric Reflection Coefficient Equation/86
    3.1.4 Graphical Representation/89
    3.2 Impedance Transformation/90
    3.2.1 Impedance Transformation for General Load/90
    3.2.2 Standing Wave Ratio/92
    3.2.3 Special Transformation Conditions/93
    3.2.4 Computer Simulations/97
    3.3 Admittance Transformation/98
    3.3.1 Parametric Admittance Equation/98
    3.3.2 Additional Graphical Displays/101
    3.4 Parallel and Series Connections/102
    3.4.1 Parallel Connection of R and L Elements/102
    3.4.2 Parallel Connection of R and C Elements/103
    3.4.3 Series Connection of R and L Elements/103
    3.4.4 Series Connection of R and C Elements/104
    3.4.5 Example of a T-Network/105
    3.5 Summary/109
    Chapter 4 Single- and Multiport Networks/117
    4.1 Basic Definitions/117
    4.2 Interconnecting Networks/124
    4.2.1 Series Connection of Networks/124
    4.2.2 Parallel Connection of Networks/126
    4.2.3 Cascading Networks/126
    4.2.4 Summary of ABCD Network Representations/127
    4.3 Network Properties and Applications/131
    4.3.1 Interrelations between Parameter Sets/131
    4.3.2 Analysis of Microwave Amplifier/132
    4.4 Scattering Parameters/135
    4.4.1 Definition of Scattering Parameters/136
    4.4.2 Meaning of S-Parameters/138
    4.4.3 Chain Scattering Matrix/140
    4.4.4 Conversion between Z- and S-Parameters/142
    4.4.5 Signal Flowgraph Modeling/143
    4.4.6 Generalization of S-Parameters/148
    4.4.7 Practical Measurements of S-Parameters/150
    4.5 Summary/156
    Chapter 5 An Overview of RF Filter Design/164
    5.1 Basic Resonator and Filter Configurations/165
    5.1.1 Filter Types and Parameters/165
    5.1.2 Low-Pass Filter/168
    5.1.3 High-Pass Filter/171
    5.1.4 Bandpass and Bandstop Filters/172
    5.1.5 Insertion Loss/177
    5.2 Special Filter Realizations/180
    5.2.1 Butterworth-Type Filters/180
    5.2.2 Chebyshev-Type Filters/183
    5.2.3 Denormalization of Standard Low-Pass Design/188
    5.3 Filter Implementation/196
    5.3.1 Unit Elements/197
    5.3.2 Kuroda誷 Identities/198
    5.3.3 Examples of Microstrip Filter Design/199
    5.4 Coupled Filter/206
    5.4.1 Odd and Even Mode Excitation/206
    5.4.2 Bandpass Filter Section/209
    5.4.3 Cascading Bandpass Filter Elements/210
    5.4.4 Design Example/211
    5.5 Summary/215
    Chapter 6 Active RF Components/223
    6.1 Semiconductor Basics/224
    6.1.1 Physical Properties of Semiconductors/224
    6.1.2 The pn-Junction/229
    6.1.3 Schottky Contact/236
    6.2 RF Diodes/239
    6.2.1 Schottky Diode/239
    6.2.2 PIN Diode/242
    6.2.3 Varactor Diode/246
    6.2.4 IMPATT Diode/248
    6.2.5 Tunnel Diode/250
    6.2.6 TRAPATT, BARRITT, and Gunn Diodes/251
    6.3 Bipolar-Junction Transistor/252
    6.3.1 Construction/252
    6.3.2 Functionality/254
    6.3.3 Frequency Response/259
    6.3.4 Temperature Behavior/261
    6.3.5 Limiting Values/264
    6.3.6 Noise Performance/265
    6.4 RF Field Effect Transistors/266
    6.4.1 Construction/266
    6.4.2 Functionality/267
    6.4.3 Frequency Response/272
    6.4.4 Limiting Values/272
    6.5 Metal Oxide Semiconductor Transistors/273
    6.5.1 Construction/273
    6.5.2 Functionality/274
    6.6 High Electron Mobility Transistors/275
    6.6.1 Construction/276
    6.6.2 Functionality/276
    6.6.3 Frequency Response/279
    6.7 Semiconductor Technology Trends/279
    6.8 Summary/284
    Chapter 7 Active RF Component Modeling/290
    7.1 Diode Models/290
    7.1.1 Nonlinear Diode Model/290
    7.1.2 Linear Diode Model/293
    7.2 Transistor Models/295
    7.2.1 Large-Signal BJT Models/295
    7.2.2 Small-Signal BJT Models/301
    7.2.3 Large-Signal FET Models/311
    7.2.4 Small-Signal FET Models/314
    7.2.5 Transistor Amplifier Topologies/317
    7.3 Measurement of Active Devices/318
    7.3.1 DC Characterization of Bipolar Transistor/318
    7.3.2 Measurements of AC Parameters of Bipolar Transistors/320
    7.3.3 Measurements of Field Effect Transistor Parameters/323
    7.4 Scattering Parameter Device Characterization/325
    7.5 Summary/332
    Chapter 8 Matching and Biasing Networks/338
    8.1 Impedance Matching Using Discrete Components/338
    8.1.1 Two-Component Matching Networks/338
    8.1.2 Forbidden Regions, Frequency Response, and Quality Factor/346
    8.1.3 T and Pi Matching Networks/354
    8.2 Microstrip Line Matching Networks/357
    8.2.1 From Discrete Components to Microstrip Lines/357
    8.2.2 Single-Stub Matching Networks/360
    8.2.3 Double-Stub Matching Networks/364
    8.3 Amplifier Classes of Operation and Biasing Networks/366
    8.3.1 Classes of Operation and Efficiency of Amplifiers/367
    8.3.2 Bipolar Transistor Biasing Networks/371
    8.3.3 Field Effect Transistor Biasing Networks/376
    8.4 Summary/382
    Chapter 9 RF Transistor Amplifier Design/387
    9.1 Characteristics of Amplifiers/387
    9.2 Amplifier Power Relations/388
    9.2.1 RF Source/388
    9.2.2 Transducer Power Gain/389
    9.2.3 Additional Power Relations/390
    9.3 Stability Considerations/392
    9.3.1 Stability Circles/392
    9.3.2 Unconditional Stability/395
    9.3.3 Stabilization Methods/400
    9.4 Constant Gain/402
    9.4.1 Unilateral Design/402
    9.4.2 Unilateral Figure of Merit/407
    9.4.3 Bilateral Design/408
    9.4.4 Operating and Available Power Gain Circles/411
    9.5 Noise Figure Circles/416
    9.6 Constant VSWR Circles/419
    9.7 Broadband, High-Power, and Multistage Amplifiers/423
    9.7.1 Broadband Amplifiers/423
    9.7.2 High-Power Amplifiers/431
    9.7.3 Multistage Amplifiers/434
    9.8 Summary/440
    Chapter 10 Oscillators and Mixers/446
    10.1 Basic Oscillator Models/447
    10.1.1 Feedback Oscillator/447
    10.1.2 Negative Resistance Oscillator/448
    10.1.3 Oscillator Phase Noise/458
    10.1.4 Feedback Oscillator Design/463
    10.1.5 Design Steps/465
    10.1.6 Quartz Oscillators/468
    10.2 High-Frequency Oscillator Configuration/470
    10.2.1 Fixed-Frequency Oscillators/473
    10.2.2 Dielectric Resonator Oscillators/478
    10.2.3 YIG-Tuned Oscillator/482
    10.2.4 Voltage-Controlled Oscillator/483
    10.2.5 Gunn Element Oscillator/485
    10.3 Basic Characteristics of Mixers/486
    10.3.1 Basic Concepts/487
    10.3.2 Frequency Domain Considerations/489
    10.3.3 Single-Ended Mixer Design/490
    10.3.4 Single-Balanced Mixer/497
    10.3.5 Double-Balanced Mixer/498
    10.3.6 Integrated Active Mixers/498
    10.3.7 Image Reject Mixer/502
    10.4 Summary/512
    Appendix A Useful Physical Quantities and Units/517
    Appendix B Skin Equation for a Cylindrical Conductor/522
    Appendix C Complex Numbers/525
    Appendix D Matrix Conversions/527
    Appendix E Physical Parameters of Semiconductors/530
    Appendix F Long and Short Diode Models/531
    Appendix G Couplers/534
    Appendix H Noise Analysis/540
    Appendix I Introduction to MATLAB/549

    类似图书

    猜您关注